Learn DU Make it big!

All The Best

For Your Exams

[This question paper contains 4 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 1427
Unique Paper Code : 32351303
Name of the Paper : BMATH 307 – Multivariate Calculus
Name of the Course : B.Sc. (H) Mathematics

Semester

у.

Maximum Marks: 75

Duration : 3 Hours

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

III

- 2. All sections are compulsory
- 3. Attempt any Five questions from each section. All questions carry equal marks

SECTION I

1. Let
$$f(x,y) = \frac{xy(x^2 - y^2)x}{x^2 + y^2}$$
 if $(x, y) \neq (0,0)$

= 0 otherwise

Show that f(0, y) = -y and f(x, 0) = x for all x and

1427

2.

Use incremental approximation to estimate the function
 f(x, y) = sin(xy) at the point
 learndu.in

$$\left(\sqrt{\frac{\pi}{2}} + .01, \sqrt{\frac{\pi}{2}} - .01\right)$$

- 3. If $z = xy + f(x^2 + y^2)$, show that $y \frac{\partial z}{\partial x} x \frac{\partial z}{\partial y} = y^2 x^2$.
- 4. Assume that maximum directional derivative of f at P₀(1,2) is equal to 50 and is attained in the direction towards Q(3, -4). Find ∇f at P₀(1, 2).
 - 5. Find the absolute extrema of $f(x, y) = 2x^2 y^2$ on the disk $x^2 + y^2 \le 1$.
 - 6. Use Lagrange multiplier to find the distance from (0, 0, 0) to plane Ax + By + Cz = D where at least one of A, B, C is nonzero.

SECTION II

1. Compute the integral $\int_0^1 \int_x^{2x} e^{y-x} dy dx$ with the order of integration reversed.

Use Polar double integral to show that a sphere of radius α has volume $\frac{4}{3}\pi a^3$.

2

1427

- 3. Compute the area of region D bounded above by line y = x, and below by circle $x^2 + y^2 2y = 0$.
- 4. Find the volume of the solid bounded above by paraboloid $z = 6 x^2 y^2$ and below by $z = 2x^2 + y^2$.
- 5. Evaluate $\iint_D \frac{dx dy dz}{\sqrt{x^2 + y^2 + z^2}}$, where D is the solid sphere $x^2 + y^2 + z^2 \le 3$.
- Use a suitable change of variables to find the area of region R bounded by the hyperbolas xy=1 and xy=4 and the lines y=x and y=4x.

SECTION III

- 1. Find the mass of a wire in the shape of curve C: $x = 3 \sin t$, $y = 3 \cos t$, z = 2t for $0 \le t \le \pi$ and density at point (x, y, z) on the curve is $\delta(x, y, z) = x$.
- 2. Find the work done by force

$$\vec{F}(x,y,z) = (y^2 - z^2)\hat{i} + (2yz)\hat{j} - (x^2)\hat{k}$$

on an object moving along the curve C given by x(t) = t, $y(t) = t^2$, $z(t) = t^3$, $0 \le t \le 1$.

3. Use Green's theorem to find the work done by the force field

1.

$$\vec{F}(x,y) = (3y-4x)\hat{i} + (4x-y)\hat{j}$$

when an object moves once counterclockwise around the ellipse $4x^2 + y^2 = 4$.

4. Use Stoke's theorem to evaluate the surface integral

$\iint_{S} (\operatorname{curl} \vec{F}.N) \, \mathrm{dS}$

where $F = x i + y^2 j + z e^{xy} k$ and S is that part of surface $z = 1 - x^2 - 2y^2$ with $z \ge 0$.

5. Use divergence theorem to evaluate the integral $\iint_{S} \vec{F} \cdot N \, dS \quad \text{where} \quad \vec{F}(x, y, z) = (\cos yz)\hat{i} + e^{xz}\hat{j} + 3z^{2}\hat{k} ,$

where S is hemisphere surface $z = \sqrt{4 - x^2 - y^2}$ together with the disk $x^2 + y^2 \le 4$, in x-yplane.

6. Evaluate the line integral $\int_C \vec{F} d\vec{R}$

1513 1

Where $\vec{F}(x, y) = [(2x - x^2y)e^{-xy} + tan^{-1}y]\hat{i} + \left[\frac{x}{v^2 + 1} - x^3e^{-xy}\right]\hat{j}$ and C is the ellipse $9x^2 + 4y^2 = 36$.

Join Us For University Updates

Learn_DU

